Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732410

RESUMO

Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.

2.
Heliyon ; 10(7): e29067, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601516

RESUMO

'Kolo' is an Ethiopian well-roasted and dehulled barely snack food eaten alone or mixed with other roasted grains with a relatively long shelf life. It is an ancient and staple Ethiopian snack food that is being introduced around the globe. Traditionally, Kolo has been prepared by Ethiopian mothers. However, there is a scarcity of documented information about the nutritional profile, consumption status and effect of processing conditions on quality of Kolo. Therefore, the aim of this review is to access the indigenous processing practices, consumption status and the effect of processing conditions in quality of Kolo. The review discussed in detail the raw materials, processing steps, nutritional status, anti-nutritional factors, digestability and functional properties of Kolo from publications from the last thirty years. Due to the high temperature processing condition, the presence of acrylamide is highly likely and this may affect the safety of Kolo. The anti-nutritional factors in Kolo may affect the nutritional quality of Kolo due to the inaccessibility of nutrients. This information could have a significant contribution for future researchers, policy makers, society and producers. In conclusion, there is a need to get more tangible information about the quality and safety of Kolo through well designed scientific research to safeguard the wellbeing of the society.

3.
Heliyon ; 10(4): e26573, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434023

RESUMO

High protein content, excellent amino acid profile, absence of anti-nutritional factors (ANFs), high digestibility and good palatability of fishmeal (FM), make it a major source of protein in aquaculture. Naturally derived FM is at risk due to an increase in its demand, unsustainable practices, and price. Thus, there is an urgent need to find affordable and suitable protein sources to replace FM. Plant protein sources are suitable due to their widespread availability and low cost. However, they contained certain ANFs, deficiency of some amino acids, low nutrient bioavailability and poor digestibility due to presence of starch and fiber. These unfavourable characteristics make them less suitable for feed as compared to FM. Thus, these potential challenges and limitations associated with various plant proteins have to be overcome by using different methods, i.e. enzymatic pretreatments, solvent extraction, heat treatments and fermentation, that are discussed briefly in this review. This review assessed the impacts of plant products on growth performance, body composition, flesh quality, changes in metabolic activities and immune response of fishes. To minimize the negative effects and to enhance nutritional value of plant products, beneficial functional additives such as citric acid, phytase and probiotics could be incorporated into the plant-based FM. Interestingly, these additives improve growth of fishes by increasing digestibility and nutrient utilization of plant based feeds. Overall, this review demonstrated that the substitution of fishmeal by plant protein sources is a plausible, technically-viable and practical option for sustainable aquaculture feed production.

4.
Environ Sci Pollut Res Int ; 31(11): 16113-16130, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315337

RESUMO

Fishmeal is an indispensable ingredient for most aquatic animals. However, the finite supply and escalating price of fishmeal seriously limit its use in aquaculture. Thus the development of new, sustainable protein ingredients has been a research focus. Microalgae are potential fishmeal alternatives owing to their high protein content and balanced amino acid profile. Studies suggest that suitable replacement of fishmeal with microalgae is beneficial for fish growth performance, but excessive replacement would induce poor growth and feed utilization. Therefore, this paper aims to review research on the maximum substitutional level of fishmeal by microalgae and propose the main issues and possible solutions for fishmeal replacement by microalgae. The maximum replacement level is affected by microalgal species, fish feeding habits, quality of fishmeal and microalgal meals, and supplemental levels of fishmeal in the control group. Microalgae could generally replace 100%, 95%, 95%, 64.1%, 25.6%, and 18.6% fishmeal protein in diets of carp, shrimp, catfish, tilapia, marine fish, and salmon and trout, respectively. The main issues with fishmeal replacement using microalgae include low production and high production cost, poor digestibility, and anti-nutritional factors. Possible solutions to these problems are recommended in this paper. Overall, microalgae are promising fishmeal alternatives in aquaculture.


Assuntos
Microalgas , Tilápia , Animais , Ração Animal/análise , Aquicultura , Dieta
5.
J Food Sci ; 89(4): 2188-2201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369948

RESUMO

Guar seed flour (GSF) has a high amount of carbohydrates, proteins, phytochemicals, and anti-nutritional factors (ANFs), which limits its use. To address this issue, the current study was undertaken to understand the effect of microwave (MW) irradiation on ANFs, phytochemicals, in vitro protein digestibility (IVPD), and functional attributes of GSF at varying power density (Pd: 1-3 W/g) and duration (3-9 min). The ANFs were determined using a colorimetric assay and a Fourier transform infrared spectrum. At 3 Pd-9 min, the maximum reduction in ANFs (tannin, phytic acid, saponin, and trypsin inhibitor activity) was observed. Higher Pd and treatment duration increased antioxidant activity and total phenolic content, except for total flavonoid content. Furthermore, compared to the control sample (78.38%), the IVPD of the GSF samples increased to 3.28% (3 Pd-9 min). An increase in Pd and duration of MW treatment improved the thermal and pasting properties of GSF samples up to 2 Pd-9 min. Due to inter- and intramolecular hydrogen bonding degradation, the relative crystallinity of the 3 Pd-9 min treated GSF sample was 30.58%, which was lower than that of the control (40.08%). In MW-treated samples, SEM images revealed smaller clusters with rough and porous structures. However, no noticeable color (ΔE) changes were observed in MW-treated samples. Aside from water absorption capacity and water solubility index, MW treatment reduced oil absorption capacity, foaming capacity, and emulsifying capacity. As demonstrated by principal component analysis, MW irradiation with moderate Pd (2-3) was more effective in reducing ANFs, retaining nutritional contents, and improving the digestible properties of GSF, which could be a potential ingredient for developing gluten-free products.


Assuntos
Cyamopsis , Micro-Ondas , Farinha/análise , Sementes/química , Compostos Fitoquímicos/análise , Água/análise
6.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 596-610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38169048

RESUMO

Xylanases from glycoside hydrolase (GH) families 10 and 11 are common feed additives for broiler chicken diets due to their catalytic activity on the nonstarch polysaccharide xylan. This study investigated the potential of an optimized binary GH10 and GH11 xylanase cocktail to mitigate the antinutritional effects of xylan on the digestibility of locally sourced chicken feed. Immunofluorescence visualization of the activity of the xylanase cocktail on xylan in the yellow corn of the feed showed a substantial collapse in the morphology of cell walls. Secondly, the reduction in the viscosity of the digesta of the feed by the cocktail showed an effective degradation of the soluble fraction of xylan. Analysis of the xylan degradation products from broiler feeds by the xylanase cocktail showed that xylotriose and xylopentaose were the major xylooligosaccharides (XOS) produced. In vitro evaluation of the prebiotic potential of these XOS showed that they improved the growth of the beneficial bacteria Streptococcus thermophilus and Lactobacillus bulgaricus. The antibacterial activity of broths from XOS-supplemented probiotic cultures showed a suppressive effect on the growth of the extraintestinal infectious bacterium Klebsiella pneumoniae. Supplementing the xylanase cocktail in cereal animal feeds attenuated xylan's antinutritional effects by reducing digesta viscosity and releasing entrapped nutrients. Furthermore, the production of prebiotic XOS promoted the growth of beneficial bacteria while inhibiting the growth of pathogens. Based on these effects of the xylanase cocktail on the feed, improved growth performance and better feed conversion can potentially be achieved during poultry rearing.


Assuntos
Ração Animal , Galinhas , Digestão , Endo-1,4-beta-Xilanases , Ração Animal/análise , Animais , Digestão/efeitos dos fármacos , Digestão/fisiologia , Endo-1,4-beta-Xilanases/farmacologia , Endo-1,4-beta-Xilanases/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Xilanos/farmacologia , Xilanos/química , Probióticos/farmacologia
7.
Curr Res Food Sci ; 7: 100612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868001

RESUMO

Protein concentrates obtained from discarded grain flours of white chickpea Sinaloa (Cicer arietinum) (CC), "Azufrazin" bean (Phaseolus vulgaris) (BC), and white corn (Zea mays) (MC), were characterized biochemically through bromatological analyses (protein, lipid, fiber, moisture, ashes, and nitrogen free extract), HPLC techniques (amino acids content), and spectrophotometry (anti-nutrients: phytic acid, trypsin inhibitors, and saponins). The percentage of protein obtained from CC, BC, and MC was 71.23, 81.10, and 55.69%, respectively. Most peptides in the BC and CC flours had a molecular weight of <1.35 kDa, meanwhile, MC peptides were heavier (1.35 to 17 kDa). The amino acids (AA) profile of flours and protein concentrates were similar; however, all the protein concentrates showed an increased AA accumulation (300 to -400%) compared with their flours. The protein concentrates from BC registered the highest AA accumulation (77.4 g of AA/100 g of protein concentrates). Except for the phytic acid in CC and trypsin inhibitor in CC and MC, respectively, the rest of the protein concentrates exhibited higher amounts of the anti-nutrients compared with their flours; however, these levels do not exceed the reported toxicity for some animals, mainly when used in combination with other ingredients for feed formulations. It is concluded that CC and BC protein concentrates showed better nutritional characteristics than MC (level of protein, size of peptides, and AA profile). After biochemical characterization, protein concentrates derived from by-products have nutritional potential for the animal feed industry.

8.
Front Nutr ; 10: 1215873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720376

RESUMO

Humans are constantly facing multiple health challenges from both communicable and non-communicable diseases that significantly affect their health. Additionally, drug resistance or failure has made the situation even worse and poses serious challenges for researchers to develop new drugs. Hence, to address these problems, there is an urgent need to discover and develop timely and long-term-based therapeutic treatments from different sources. One such approach is harnessing the potential of plant secondary metabolites. Plants have been utilized for therapeutic purposes in addition to being used for nutritional benefits. In the last two decades, plant-based drug developments have been one of the effective means of treating human diseases owing to their multiple functions. More recently, anti-nutritional factors (ANFs) have emerged as one of the important targets for novel plant-based drug development due to their multifaceted and potential pharmacological properties. However, their anti-nutritional properties have been the major setback for their limited success in the pharmacological sector. In this review, we provide an overview of ANFs and their beneficial roles in preventing human diseases with multiple case studies. We also highlight the recent developments and applications of ANFs in the food industry, agriculture, and pharmaceutics with future perspectives. Furthermore, we evaluate meta-analyses on ANFs from the last 30 years in relation to their function in human health benefits. This review is an endeavor to reevaluate the merit of these natural compounds and explore their potential for both human and animal health.

9.
Trop Anim Health Prod ; 55(5): 311, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733126

RESUMO

Ruminant production in West Africa faces both qualitative and quantitative feeding constraints during the dry season and animal diseases in smallholder farms. High-protein legume seeds can represent an alternative and sustainable feed that could enhance animal performance. The use of legume beans, limited by their anti-nutritional factor contents, can be improved through different detoxification methods. The study evaluated the effects of processed velvet beans compared to raw velvet beans on the nutritive value of the beans, nutrient intakes, growth performance, and blood profile in West African Dwarf (WAD) goats. Four diets were tested, including 22.22% of raw velvet beans (RW diet), soaked beans (SK diet), boiled beans (BL diet), or roasted beans (RT diet). Twenty WAD goats of 6.85 ± 0.93 kg of body weight were divided equally into 4 groups and fed one of the four experimental diets. The processing method affects the crude protein content of velvet beans; in particular, tannin content was reduced with soaking or boiling. Dry matter and nutrient intakes resulted significantly (p < 0.05) higher in the SK diet compared to the control. Daily weight gain was highest in SK and RT diets and lowest in BL and the control diets RW. Therefore, the FCR was highest in BL and lowest in SK diets. In addition, SK diet showed the lowest feeding cost (1046.70 XOF/kg WG in SK). Our study revealed that processed velvet beans obtained using simple methods (e.g., soaking, boiling, or roasting) could be used as low-cost protein supplements in smallholder farms to enhance goats' performance. The soaking method appears the simplest and cheapest process that smallholder farmers can easily use to enhance goats' productivity and improve their livelihoods.


Assuntos
Fabaceae , Mucuna , Animais , Cabras , Ingestão de Alimentos , Verduras , Nutrientes
10.
Food Chem X ; 18: 100687, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397203

RESUMO

Amaranth and quinoa are small-seeded grains with high nutritional and phytochemical profiles that promote numerous health benefits and offer protection against various chronic ailments including hypertension, diabetes, cancer, and cardiovascular disorders. They are classified as pseudocereals and possess significant nutritional benefits due to their abundance of proteins, lipids, fiber, vitamins, and minerals. Moreover, they exhibit an exceptional balance of essential amino acids. Despite having several health benefits, these grains have lost their popularity due to their coarse nature and are neglected in developed countries. Research and development activities are growing to explore these underutilized crops, characterizing and valorizing them for food applications. In this context, this review highlights the latest advancements in use of amaranth and quinoa as nutraceutical and functional foods, covering their bioactive substances, anti-nutritional factors, processing techniques, health benefits, and applications. This information will be valuable for planning novel research for efficient use of these neglected grains.

11.
Front Nutr ; 10: 1144439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426189

RESUMO

Introduction: Neglected and underutilized crop species (NUCS) or forbidden crops offer tremendous potential to combat malnutrition, poverty, and global hidden hunger. Since overdependence on a few dominant cereal crops, viz., rice, maize, and wheat, is insufficient to meet the global food energy intake, the identification, genetic improvement, and implementation of various policies for wenumerates comprehensive comparative analyses of the nutrient profile of staple crops vs. potent underutilized crops with reference to cultivation constraints and climate resilience with different agro-diversification strategies. Methodology: The research databases Scopus, JSTOR, Web of Science, EBSCO, Google Scholar, ScienceDirect, PubMed, and Academic Search were searched using relevant research queries. Result: Out of 2,345 hits, 99 articles pertinent to the subject domain showed that underutilized crops are nutritionally superior, contain health-promoting bioactive components, and are more climate resilient than cereal crops. However, several constraints hinder the efficient utilization of these crops. Discussion: Despite underutilized crops' many health benefits, improved cultivation techniques for the large-scale production of these crops are still in their infancy. Most of the time, however, the scientific knowledge gleaned from various study domains stays within the scientific community. The most crucial need of the hour, therefore, is an efficient network structure connecting governments, farmers, researchers, and people in business. Moreover, care must be taken to ensure that the policies of governments and INGOs/NGOs are properly implemented within a NUCS framework.

12.
Ultrason Sonochem ; 97: 106464, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37271028

RESUMO

High-intensity ultrasound (HIU) is considered one of the promising non-chemical eco-friendly techniques used in food processing. Recently (HIU) is known to enhance food quality, extraction of bioactive compounds and formulation of emulsions. Various foods are treated with ultrasound, including fats, bioactive compounds, and proteins. Regarding proteins, HIU induces acoustic cavitation and bubble formation, causing the unfolding and exposure of hydrophobic regions, resulting in functional, bioactive, and structural enhancement. This review briefly portrays the impact of HIU on the bioavailability and bioactive properties of proteins; the effect of HIU on protein allergenicity and anti-nutritional factors has also been discussed. HIU can enhance bioavailability and bioactive attributes in plants and animal-based proteins, such as antioxidant activity, antimicrobial activity, and peptide release. Moreover, numerous studies revealed that HIU treatment could enhance functional properties, increase the release of short-chain peptides, and decrease allergenicity. HIU could replace the chemical and heat treatments used to enhance protein bioactivity and digestibility; however, its applications are still on research and small scale, and its usage in industries is yet to be implemented.


Assuntos
Gorduras , Sonicação , Animais , Sonicação/métodos , Fenômenos Químicos , Gorduras/química , Manipulação de Alimentos/métodos , Interações Hidrofóbicas e Hidrofílicas
13.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37366171

RESUMO

The projected global population is expected to reach around 9.7 billion by 2050, indicating a greater demand for proteins in the human diet. Cereal bran proteins (CBPs) have been identified as high-quality proteins, with potential applications in both the food and pharmaceutical industries. In 2020, global cereal grain production was 2.1 billion metric tonnes, including wheat, rice, corn, millet, barley, and oats. Cereal bran, obtained through milling, made up 10-20% of total cereal grain production, varying by grain type and milling degree. In this article, the molecular composition and nutritional value of CBPs are summarized, and recent advances in their extraction and purification are discussed. The functional properties of CBPs are then reviewed, including their solubility, binding, emulsifying, foaming, gelling, and thermal properties. Finally, current challenges to the application of CBPs in foods are highlighted, such as the presence of antinutritional factors, low digestibility, and allergenicity, as well as potential strategies to improve the nutritional and functional properties by overcoming these challenges. CBPs exhibit nutritional and functional attributes that are similar to those of other widely used plant-based protein sources. Thus, CBPs have considerable potential for use as ingredients in food, pharmaceutical, and other products.

14.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341113

RESUMO

The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.


Dry beans are a source of lysine-rich proteins and high-quality AA for the diet.Physical treatments can reduce the ANFs of beans and increase protein digestibility.Eco-friendly technologies can treat, modify, extract, and separate bean proteins.Conformational changes with protein unfolding improve WHC, EA, and solubility.The combined use of emerging technologies allows for conveying advantages of each one.

15.
Foods ; 12(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238865

RESUMO

Buckwheat is a pseudo-cereal widely grown and consumed throughout the world. Buckwheat is recognized as a good source of nutrients and, in combination with other health-promoting components, is receiving increasing attention as a potential functional food. Despite the high nutritional value of buckwheat, a variety of anti-nutritional features makes it difficult to exploit its full potential. In this framework, sprouting (or germination) may represent a process capable of improving the macromolecular profile, including reducing anti-nutritional factors and/or synthesizing or releasing bioactives. This study addressed changes in the biomolecular profile and composition of buckwheat that was sprouted for 48 and 72 h. Sprouting increased the content of peptides and free-phenolic compounds and the antioxidant activity, caused a marked decline in the concentration of several anti-nutritional components, and affected the metabolomic profile with an overall improvement in the nutritional characteristics. These results further confirm sprouting as a process suitable for improving the compositional traits of cereals and pseudo-cereals, and are further steps towards the exploitation of sprouted buckwheat as a high-quality ingredient in innovative products of industrial interest.

16.
Food Res Int ; 168: 112790, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120236

RESUMO

The present study was carried out to investigate the effect of atmospheric cold plasma treatment on the nutritional, anti-nutritional, functional, morphological, and digestibility of guar seed (Cyamopsis tetragonoloba L.) flour. Here, guar seed flour was kept inside the plasma reactor for 5 to 20 min at different power levels (10 & 20 kV). The cold plasma treatment (CPT) significantly (p < 0.05) reduced the carbohydrate (46.87 - 36.81 %), protein (27.15 - 25.88 %), and increased the WAC (1.89 - 2.91 g/g), OAC (1.18 - 2.17 g/g), FC (113 - 186.17 %), and pasting properties of guar seed flour. High-intensity plasma-treated samples (20 kV-20 min) contained lesser tannin, phytic acid, and saponin with reduced the nutritional value. The FTIR spectrum suggested that functional group formation or destruction might have occurred in the plasma-treated samples. Additionally, the crystallinity is reduced with increasing applied voltage or duration. The SEM analysis reveals that CPT resulted in the formation of rough surfaces with highly porous structures. On the other hand, CPT significantly reduced the trypsin inhibitor activity and had a minor impact on in-vitro protein digestibility except for the 20 kV-20 min treated sample. In PCA analysis, 10 kV-15 min treated samples exhibited better nutritional value, functional, and pasting properties with maximum impact of anti-nutritional factors. From the results, it can be concluded that treatment duration rather than the applied voltage plays a significant role in preserving the nutritional content.


Assuntos
Cyamopsis , Gases em Plasma , Cyamopsis/química , Farinha/análise , Sementes/química , Valor Nutritivo
17.
J Food Sci Technol ; 60(3): 1065-1076, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908360

RESUMO

Seven indigenous pearl millet varieties, including non-bio-fortified (HC-10 & HC-20) and bio-fortified (Dhanashakti) and bio-fortified hybrids, viz., AHB-1200, HHB-299, HHB-311, and RHB-233, were studied in the present work. There was not any significant difference observed in the crucial anti-nutrients content, i.e., phytate (24.88-32.56 mg/g), tannin (3.07-4.35 mg/g), and oxalate (0.33-0.43 mg/g). Phytochemical content and antioxidant activity showed significantly high (p < 0.05) TPC and FRAP, TFC, and DPPH radical scavenging activity in the HHB 299 and Dhanashakti, respectively. Quantitative analysis of polyphenols by HPLC (first report on these varieties) revealed that HHB-299 has the highest amount of gallic acid. Fatty acid profiling by GC-FID showed that Dhanashakti, AHB-1200, and HHB-299 have rich monounsaturated fatty acid (MUFA) and polyunsaturated fatty acids (PUFA). Mineral analysis by ICP-OES showed high iron (87.79 and 84.26 mg/kg) and zinc (55.05 and 52.43 mg/kg) content in the HHB-311 and Dhanashakti, respectively. Results of the present study would help facilitate the formulation of various processed functional food products (RTC/RTE) that are currently not reported/unavailable. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05452-x.

18.
Nutrients ; 15(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986077

RESUMO

Hairless canary seed (Phalaris canariensis L.) is a novel true cereal that is now approved for human consumption in Canada and the United States. This true cereal grain has higher protein content (22%) than oat (13%) and wheat (16%) and represents a valuable source of plant proteins. Assessment of canary seed protein quality is therefore essential to evaluate its digestibility and ability to provide sufficient amounts of essential amino acids for human requirements. In this study, the protein nutritional quality of four hairless canary seed varieties (two brown and two yellow) were evaluated in comparison to oat and wheat. The assessment of anti-nutrients contents (phytate, trypsin inhibitor activity, and polyphenols) showed that brown canary seed varieties had the highest content in phytate and oat the highest in polyphenols. Trypsin inhibitor level was comparable among studied cereals, but slightly higher in the brown canary seed Calvi variety. In regard to protein quality, canary seed had a well-balanced amino acid profile and was particularly high in tryptophan, an essential amino acid normally lacking in cereals. The in vitro protein digestibility of canary seeds as determined by both the pH-drop and INFOGEST (international network of excellence on the fate of food in the gastrointestinal tract) protocols appears slightly lower than wheat and higher than oat. The yellow canary seed varieties showed better overall digestibility than the brown ones. For all studied cereal flours, the limiting amino acid was lysine. The calculated in vitro PDCAAS (protein digestibility corrected amino acid score) and DIAAS (digestible indispensable amino acid score) were higher for the yellow C05041 cultivar than the brown Bastia, similar to those of wheat, but lower than those of oat proteins. This study demonstrates the feasibility and utility of in vitro human digestion models for the assessment of protein quality for comparison purpose.


Assuntos
Avena , Triticum , Humanos , Triticum/química , Inibidores da Tripsina , Ácido Fítico/análise , Digestão , Aminoácidos/metabolismo , Aminoácidos Essenciais/análise , Sementes/química , Grão Comestível/química
19.
Food Res Int ; 164: 112336, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737929

RESUMO

Acacia seed (AS) is rich in protein and iron but contains protease inhibitors that can reduce protein digestibility (PD). The seeds are generally roasted prior to consumption, although no information on the PD of roasted AS is available. This study investigated the effect of roasting time (5, 7 and 9 min at 180 °C) on the chemical composition, physicochemical properties, and in vitro PD and intestinal iron absorption of three wild harvested Australian AS species, Acacia victoriae, A. coriacea and A. cowleana. Roasting A. victoriae and A. coriacea seeds for 7 min significantly increased PD in the seeds by 36 and 61 %, respectively. A 9-min roasting time was required to achieve 75 % reduction in trypsin inhibitor activity in A. coriacea seed, while a shorter roasting time (RT) was sufficient to achieve similar reduction rates in the other two Acacia species. Among the functional properties, water and oil absorption capacities were significantly enhanced as RT increased. The starch granules in 7- and 9-min roasted A. victoriae seed flour detached from the protein matrix while random coil increased in 7-min roasted A. victoriae and 9-min roasted A. coriacea and A. cowleana, thus, contributing to enhanced PD. Although the SDS-PAGE in 7- and 9-min roasted A. cowleana samples showed reductions in the intensity of bands for high molecular weight proteins, PD was not affected by RT. However, intestinal iron absorption was not significantly affected by roasting as compared to raw digesta samples. Compared to commercial roasted Acacia seed, the considerably shorter RT used in this study improved PD in the AS flour with less adverse effects on techno-functional properties.


Assuntos
Acacia , Farinha , Farinha/análise , Acacia/química , Austrália , Ferro/análise , Sementes/química
20.
Methods Enzymol ; 680: 195-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710011

RESUMO

Rapid and accurate measurement of trypsin inhibitor is critical for soy processors to assess the quality of soy meal. Currently, trypsin inhibitor activity is measured using the American Oil Chemists' Society (AOCS) and the American Association of Cereal Chemists International (AACCI) approved method. We have modified and improved the AACCI/AOCS approved method resulting in the elimination of several time-consuming steps and drastically reducing the assay volume. By employing our simplified procedure, we have measured trypsin inhibitor activity of several soy and soy products. A side-by side comparison of our simplified procedure with AOCS approved method revealed strikingly similar results indicating that several time-consuming and tedious steps associated with AACCI/AOCS approved methods can be eliminated without sacrificing the accuracy of the assay. Moreover, we demonstrate that our assay can also be carried out in 96-well microplates which will enable high-throughput screening of large number of soy meal samples.


Assuntos
Alimentos de Soja , Proteínas de Soja , Inibidores da Tripsina , Análise Custo-Benefício , Alimentos , Temperatura Alta , Glycine max , Inibidores da Tripsina/análise , Estados Unidos , Alimentos de Soja/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...